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Abstract
We describe the structure of solutions developing singularities in the form of
cusps in finite time in nonlocal transport equations of the family:

θt − δ(θH(θ))x − (1 − δ)H(θ)θx = 0, 0 � δ � 1, (1)

where H represents the Hilbert transform. Equations of this type appear in
various contexts: evolution of vortex sheets, models for quasi-geostrophic
equation and evolution equations for order parameters. Equation (1) was
studied in [1] and [2], and the existence of singularities developing in finite
time was proved. The structure of such singularities was, nevertheless, not
described. In this paper, we will describe the geometry of the solution in the
neighborhood of the singularity once it develops and the (self-similar) way in
which it is approached as t → t0, where t0 is the singular time.

PACS numbers: 02.30.Jr, 02.60.Cb, 02.60.Nm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We present some results on partial differential equations (PDEs) of transport type for a scalar
θ with nonlocal velocities or fluxes. We concentrate on the case of one space dimension, and
the nonlocal operator will be given by the Hilbert transform of θ defined as

Hθ(x) = 1

π
PV

∫ ∞

−∞

θ(y)

x − y
dy (2)

or

Hθ(x) = 1

2π
PV

∫ π

−π

θ(x − y)

tan y

2

dy, (3)
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in the periodic case. Nonlocal transport equations appear in various contexts and, in all
of them, a central question is the appearance of singularities during the evolution and the
mathematical description of such singularities. The simplest transport equation developing
singularities (in the form of shocks) in finite time is the Burgers equation:

θt + θθx = 0.

The simplest nonlocal analogs result in the replacement of the transport velocity θ by −Hθ

in the flux of θ or in velocity:

θt − (H(θ)θ)x = 0 (4)

and

θt − H(θ)θx = 0. (5)

Equation (4) appears as a formal 1D analog to the 2D quasi-geostrophic equation (QG),
which models the dynamics of the mixture of cold and hot air and the fronts between them,
and reads

θt + (u × ∇)θ = 0,

u = ∇⊥ψ, θ = −(−�)
1
2 ψ,

θ(x, 0) = θ0(x),

(6)

where ∇⊥ = (−∂2, ∂1). Here, θ(x, t) represents the temperature of the air. Besides its direct
physical significance [6, 10], the quasi-geostrophic equation has very interesting features of
resemblance to the 3D Euler equation, the finite time blow-up for QG also being an outstanding
open problem. With respect to this question, there are pioneering studies by Constantin et al
[5]. There are many studies on the equations following that work [9, 11, 13]. The analogy
with (4) comes from the fact that

u = −∇⊥(−�)−
1
2 θ = −R⊥θ, (7)

and hence

θt + div[(R⊥θ)θ ] = 0, (8)

where we have used the notation R⊥θ = (−R2θ, R1θ) with Rj , j = 1, 2, for the two-
dimensional Riesz transform defined by (see e.g. [12])

Rj(θ)(x, t) = 1

2π
PV

∫
R2

(xj − yj )θ(y, t)

|x − y|3 dy. (9)

The equivalent (in terms of homogeneity) singular integral operator to the Riesz transform in
1D is the Hilbert transform. Therefore, (4) is just (8) with R⊥(·) replaced by −H(·) and div(·)
replaced by ∂x .

As mentioned above, equation (5) represents the simplest case of a transport equation with
a nonlocal velocity. It is well known that the equivalent equation with a local velocity v = θ ,
known as Burger’s equation, may develop shock-type singularities in finite time. Therefore, a
natural question to pose is whether the solutions to (5) become singular in finite time or not.
In fact, this question has been previously considered in the literature motivated by the strong
analogy with the Birkhoff–Rott equation modeling the evolution of a vortex sheet, where a
crucial mathematical difficulty lies in the nonlocality of the velocity.

The analogy of (5) with Birkhoff–Rott equations was first established in [4] and [8]. These
are integrodifferential equations modeling the evolution of vortex sheets with surface tension.
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The system can be written in the form

∂

∂t
z∗(α, t) = 1

2π i
PV

∫
γ̃ (α′) dα′

z(α, t) − z(α′, t)
, (10)

∂γ̃

∂t
= 	κα, (11)

where z(α, t) = x(α, t) + iy(α, t) represents the two-dimensional vortex sheet parametrized
with α and κ denotes mean curvature. Following [4] we substitute, in order to build up the
model, equation (10) by its 1D analog

dx(α, t)

dt
= −H(θ), (12)

where we have identified γ (α, t) with θ . In the limit of σ = 0 in (11) we conclude that γ is
constant along trajectories and this fact leads, in the 1D model, to the equation

θt − (Hθ) θx = 0.

Another interesting context in which transport equations with nonlocal velocities arise is
in evolutionary PDEs for geometric order parameters (see [7]). These equations can be of the
form

∂ρ

∂t
= −div J,

where J is proportional to ρ and to quantities involving (in general) convolutions of ρ

with certain kernels, that is, velocities given in the form of integral operators of ρ. An
interesting question concerning this class of PDEs is the existence of solutions involving
localized singularities, sometimes called peakons or cuspons, that develop and propagate.

Problems of the type (4), (5) were already studied in [4] and [8]. In [8] the following
equation was considered that generalizes (4) and (5), including them as particular cases (when
δ = 1 and δ = 0 respectively):

θt − δ(H(θ)θ)x − (1 − δ)H(θ)θx = 0 with 0 � δ � 1. (13)

In [2], we proved the existence of singularities for the full range of 0 < δ � 1. The
proof of existence of singularities in the case δ = 0 is solved in [1] using a different
technique. The singularities have the form of cusps that develop at the local maxima of θ (see
figure 1). Our purpose in the present paper is to describe the structure of the solutions close to
the singularities and the shape of the cusps depending on the value of the parameter δ.

In section 2, we study the case δ = 1 in detail and describe the self-similar structure of the
singularities developing in finite time. In section 3, we describe the singularities that develop
in the range 0 < δ < 1. The limit case δ = 0 represents a singular limit of the case δ > 0
and we will briefly discuss the singularities in this case in section 4. Finally, section 5 will be
devoted to the description of the numerical method used for the numerical results in previous
sections.

2. The case δ = 1

In the case δ = 1, one gets the equation

θt − (θH(θ))x = 0, (14)

3
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Figure 1. Profiles of θ for δ = 0 at times t = 0 and t = t0 where t0 is the time of formation of the
singularity. The initial datum is θ(x, 0) = 2sech(15(x − π)).

and applying Hilbert transform to (16) and using the following properties of Hilbert transform:

H(Hf ) = −f,

H(f Hg + gHf ) = (Hf )(Hg) − fg,

(Hf )x = H(fx),

we deduce the equation

(Hθ)t − 1
2 ((Hθ)2 − θ2)x = 0 (15)

that can be combined with (14) into a single equation for z = Hθ + iθ ≡ u + iθ :

zt − zzx = 0,

for which one can find the following solution θ(x, t) (see [2] for details on its deduction) given
implicitly by

tθ = ln
√

θ2 + u2, (16)

(x − tu) = arctan
θ

u
. (17)

This solution corresponds to an initial datum θ(x, 0) = sin(x) and develops singularities
at x = π

2 , t = e−1 and θ = e, u = 0. We shall describe next the local structure of the solution
near the singularity. In order to do that, we write

t = e−1 + t ′, θ = e + θ ′,

u = u′, x = π

2
+ x ′,

which introduced into (16), (17) together with

u′ = (−t ′)
1
2 U, θ ′ = (−t ′)

1
2 , x ′ = (−t ′)X

lead, at leading order and for t ′ → 0, to

−e = 1
2e−2U 2 + 1

2e−22 − 2e−2,

0 = eX − Ue−1,
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and we conclude

 = e
3
2

√√√√
1 +

√
1 +

(
X

e

)2

≡ e
3
2 ss

(
X

e

)
, (18)

U = e
3
2

X/e√
1 +

√
1 +

(
X
e

)2

≡ e
3
2 (Hss)

(
X

e

)
. (19)

Thus, the solutions near the singularity are self-similar with profiles given by (18), (19).
More generally, we can provide with a local analysis near a singularity developing at

(x0, t0). Assume that θ0 is the value of θ at (x0, t0). We write

θ = θ0 − B(t0 − t)
1
2 ss

(
X

θ0

)
+ θ̃ , (20)

with ss as the self-similar profile defined by (18) and hence satisfying (using also (19))

− 1
2ss + Xss,X − θ0(Hss,X) = 0,

and θ̃ assumed to be o((t0 − t)
1
2 ). Then one can compute at leading order in (t0 − t) the

following equation for θ̃ :

θ̃t − θ0(H θ̃)x − B2(ssHss)X = 0. (21)

Since ssHss = −X/θ0, we immediately deduce the following solution of (21):

θ̃ = −B2θ−1
0 (t0 − t).

Therefore, near a singularity the solution behaves in the form (see figures 2, 3)

θ(x, t) = θ0 − B(t0 − t)
1
2 ss

(
X

θ0

)
− B2θ−1

0 (t0 − t) + o(t0 − t).

When t → t0, the cusp behaves locally near x0 in the form

θ(x, t0) ∼ θ0 − Bθ
− 1

2
0 |x − x0| 1

2 .

In the following sections, we shall provide numerical experiments showing this behavior for
arbitrary initial data.

3. The case 0 < δ < 1

In this case, we can write the equation in the form

θt − δθH(θx) − H(θ)θx = 0, (22)

so that one has under symmetry and at the maximum of θ the equation

θmax,t = δ H(θx)|xmax
θmax,

implying, in general, variation of the value of the maximum of θ . Let us call θ0 the value of θ

at the singular point, say x0 = 0, when the singularity develops, say at t0. Close to that point
we introduce θ = θ0 + ε̃θ and get, after linearization, the equation

θ̃t − δθ0H(̃θx) = 0.

Introducing the new variable y = x/δθ0 and the property H(Hθ̃) = −θ̃ , we deduce

θ̃t − H(̃θy) = 0 and (H θ̃)t + θ̃y = 0. (23)

5
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Figure 2. Profiles θ(x, t) taken in the neighborhood of x = π
2 and at times t = 10−4, 2 ×

10−4, 3 × 10−4, 4 × 10−4, from the time of formation of the singularity. The equation has been
solved numerically for initial data θ(x, 0) = sin(x).
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Figure 3. The same profiles θ(x, t) as in figure 2, but rescaled according to formulae (18) and
(20). The thick line corresponds to the theoretical profile (18).

Equation (23) is equivalent to

θ̃t t + θ̃yy = 0,

from which it is simple to deduce self-similar solutions in the form of separable solutions in
polar coordinates. Namely, by introducing r =

√
(t0 − t)2 + y2 and tan θ = y

t0−t
≡ Y , we can
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construct solutions in the form

θ̃ = Re(zα) = rα cos(αθ) = (t0 − t)α(1 + Y 2)
α
2 cos(α arctan Y ) ≡ (t0 − t)αss(Y ), (24)

and since (23) constitutes a Cauchy–Riemann system for θ̃ and Hθ̃ we have

Hθ̃ = Im(zα) = rα sin(αθ)

= (t0 − t)α(1 + Y 2)
α
2 sin(α arctan Y ) ≡ (t0 − t)α(Hss)(Y ). (25)

Note that in the particular case α = 1
2 , we have

(1 + Y 2)
1
4 cos

(
1
2 arctan Y

) = 1√
2

(
1 + (1 + Y 2)

1
2
) 1

2 ,

an expression identical, up to multiplicative constants, to (18).
Guided by the result in the previous section for δ = 1, we shall seek solutions of the form

θ(x, t) = θ0 + (t0 − t)α

(
X ≡ x

(t0 − t)

)
+ (t0 − t)2αG

(
X ≡ x

(t0 − t)

)
. (26)

This ansatz for θ implies

θt = (t0 − t)α−1(−α + X′) + (t0 − t)2α−1(−2αG + XG′),
(θH(θ))x = (t0 − t)α−1θ0(H)′ + (t0 − t)2α−1(H)′ + (t0 − t)2α−1θ0HG′,
H(θ)θx = (t0 − t)2α−1H()′ + (t0 − t)3α−1(HG′ + GH′),

which introduced into (22) lead, at order O((t0 − t)α−1), to the equation (−α + X′) −
δθ0(H)′ = 0, satisfied by the self-similar solution ss (defined in (24)), and, at order
O((t0 − t)2α−1), to the equation

(−2αG + XG′) − θ0δHG′ − δ(H)′ − (1 − δ) (H)′ = 0. (27)

We cannot integrate equation (27) but provide numerical evidence below showing how the
similarity exponents α (which appear to be independent of initial data) depend on δ. The
details on the numerical method are given in the last section of the paper. As the main result,
we found that the exponent α increases slowly from values close to zero (for δ close to zero)
up to 1

2 (which is the analytical result for δ = 1 obtained in the previous section). This implies
the formation of cusps such that θ ∼ θ0 − C|x − x0|α(δ) with 0 < α(δ) � 1

2 . The case δ = 0
represents a singular limit that will be treated in the following section.

In figure 4 we represent, for δ = 1
2 , the maximum of κ = |θxx | raised to some power γ

(that is, κγ ) as a function of time. We have chosen γ in such a way that the resulting curve fits

as well as possible to a straight line. A linear behavior for κγ would imply that κ 
 A(t0 − t)
1
γ .

Given the similarity law represented by (26) that would yield θxx 
 (t0 − t)α−2′′, we can
deduce

α = 2 +
1

γ
.

This implies, from our numerical results, that in the case δ = 1
2 , α 
 2 − 1

0.627 = 0.4051. In
figure 5, we represent the values of γ such that κγ fits best a straight line as a function of δ.
Note that γ decreases monotonically up to the value γ = − 2

3 for δ = 1 which would follow
from our explicit self-similar solution constructed above.
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Figure 4. Evolution of the maximum curvature raised to the power γ . The exponent γ is chosen
so that we get the best fit to a straight line. δ = 0.5.
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Figure 5. Exponent γ as a function of δ.

4. The case δ = 0

This is a singular limit since the maximum of θ does not move and remains with the same
value (say θmax = θ0) all the time. The singular solutions might have a self-similar form of
the type

θ(x, t) = θ0 − (t0 − t)β−1

(
ξ ≡ x − x0

(t0 − t)β

)
, (28)

8



J. Phys. A: Math. Theor. 41 (2008) 185204 F de la Hoz and M A Fontelos

0.04 0.045 0.05 0.055 0.06 0.065
0

0.01

0.02

0.03

0.04

0.05

0.06

t

κγ

δ=0, γ

Numerics
   Linear fit

Figure 6. Evolution of the maximum curvature raised to the power γ . The exponent γ is chosen
so that we get the best fit to a straight line. δ = 0.

where β > 1 is a free parameter to be fixed with the condition

(ξ) ∼ A|ξ | β−1
β as ξ → ±∞ . (29)

The asymptotics (29) implies

θ(x, t0) 
 θ0 − A |x − x0|
β−1
β as x → x0.

Our results represented in figure 6 indicate that the value of γ such that κγ fits best
a straight line is −0.3280 . From (28), it follows that θxx 
 −(t0 − t)−2β−1′′ so that
β = − 1

2 + 1
2γ


 2.04488. This value of β is so close to 2 that we conjecture it as exactly equal
to 2.

In order to support our conjecture, we have verified numerically some of its consequences
starting with the initial data θ(x, 0) = 2sech(15(x − π)). We have computed the profiles of
θ(x, t) for several times close to the formation of the singularity (see figure 7) and represented
the profiles of  ≡ (θ0 − θ(x, t))/(t0 − t) as a function of ξ ≡ (x − π)/(t0 − t)2 in figure 8.
We can see the collapse to a curve with a sublinear growth at infinity. In fact, from (28) and
for β = 2, it will follow a growth (ξ) ∼ A|ξ | 1

2 .
Another observation concerns the Hilbert transform of θ(x, t); note that for the self-similar

solutions

Hθ = −(t0 − t)(H) (ξ) = −(t0 − t)
1

π
PV

∫ ∞

−∞

(ξξ ′′)
1 − ξ ′′ dξ ′′

≈ −(t0 − t)
sign(ξ)

π
PV

∫ ∞

−∞

A |ξ | 1
2
∣∣ξ ′′∣∣ 1

2

1 − ξ ′′ dξ ′′ = −(t0 − t)A |ξ | 1
2 , for |ξ | � 1.

Hence [(Hθ)2]x = [(H)2]ξ ≈ sign(ξ)A2, for |ξ | � 1 and therefore the profiles [(Hθ)2]x
as a function of ξ ≡ (x − π)/(t0 − t)2 should converge, as t → t0, to a profile [(H)2]ξ that
tends to constant values as |ξ | → ±∞. In figure 9, we can see that this is indeed the case.

9
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Figure 8. Rescaled profiles of θ′0 −θ at times ti = 0.0035, 0.003, 0.0025, 0.0020, 0.0015 previous
to the formation of the singularity.

Finally, we remark that the development of a singularity in the form θ(x, t0) =
θ0 − A|x − x0| 1

2 allows a simple continuation of the solution after the singular time, i.e.
for t > t0. This continuation is given by the explicit solution of (5)

θ(x, t) = θ0 − 1
2A2(t − t0) − A|x − x0| 1

2 , (30)

as one can simply check from the fact that

Hθ = H(−A|x − x0| 1
2 ) = A sign(x)|x − x0| 1

2 ,

10
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Figure 9. Rescaled profiles of [(Hθ)2]x at times ti = 0.0035, 0.003, 0.0025, 0.0020, 0.0015
previous to the formation of the singularity.

θx = −A

2
sign(x)|x − x0|− 1

2 , θt = −1

2
A2.

For general initial data, one can continue the solutions after the singularity with a singular
solution that behaves locally near the singularity in the form

θ(x, t) = θ0 − 1

2

∫ t

t0

A2(τ ) dτ − A(t)|x − x0| 1
2 ,

with A(t) chosen appropriately so as to match the solution outside the region of formation of
the singularity.

5. Numerical method

Our numerical experiments involve integration of the equation

θt = δ(θH(θ))x + (1 − δ)H(θ)θx

= δθH(θx) + H(θ)θx,

with δ ∈ [0, 1], x ∈ [0, 2π ], t > 0. We use the classical fourth-order Runge–Kutta method in
time. Since the support of θ(x, t) is very concentrated for the kind of initial data we use, we
consider θ(x, t) to be periodic in our numerical simulations. Then, we represent it by means
of its frequencies

θ(x, t) =
N/2−1∑

ξ=−N/2

θ̂ (ξ, t) eiξs .

The conversion between θ(xj , t), with xj = 2π
N

j , and θ̂ (k, t), with k = −N
2 , . . . , N

2 − 1
has been made by means of the fast Fourier transform (FFT), where N is chosen to be

11



J. Phys. A: Math. Theor. 41 (2008) 185204 F de la Hoz and M A Fontelos

a power of 2. That enables us to spectrally calculate θx,Hθ and Hθx . In particular,
H(θ(x, t)) = ∑N/2−1

ξ=−N/2 − i sign(ξ)θ̂(ξ, t) eiξx . In the numerical experiments presented in
sections 3 and 4, we have considered the initial datum θ(x, 0) = 2sech(15(x − π)) for
x ∈ [0, 2π ]. We have implemented all our experiments with N = 262144. �t used has
been �t = 10−5. We have considered 201 uniformly distributed values for δ, i.e. δ = 0,

0.005, 0.01, 0.015, . . . , 1.
The singularity time gets smaller as δ increases, ranging from tmax ≈ 0.12, when δ = 0,

to tmax ≈ 0.02, when δ = 1. Our assumption is that max |θxx(t)| = t
1
γ , when t approaches

the singularity time. Given a γ in that interval, we try to adjust (max |θxx(t)|)γ to a straight
line, calculating that line by the least-square method. We remark that for the theoretically
known case, δ = 1, we have obtained γ = −0.6661, i.e. a value extremely close to the exact
γ = −2/3. From our numerical experiments, γ appears to be independent of the initial data.
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